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A plane-parallel layer of magnetic fluid is placed in an inhomogeneous magnetostatic field formed by a plane
system of permanent magnets periodically distributed in space. The change in the field characteristics in the
region of reflection (between the system and the layer) and screening (behind the layer) has been investigated.
An approximate theoretical description of the observed effect is given.

Introduction. The theory of magnetostatic fields in magnets is a classical branch of the electrodynamics of
continua. Among the large number of field distributions for concrete geometries, one can single out several fundamen-
tal fields widely used in physical theories, measuring methods, and technical evaluations, for example, the field of a
homogeneously magnetized (polarized) ellipsoid [1]. The field of the plane-parallel magnetizable layer in an inhomo-
geneous external field of the type of "spatial harmonic" considered in the present paper can be classified among such
kinds of distributions. The behavior of an individual component of the field forms the basis for modeling a fairly wide
range of phenomena and technical devices (magnetic screens, suspensions, nondestructive testing devices, etc.).

Magnetic fluid is a convenient model for theoretical and experimental studies, since this medium fits into the
category of anhysteretic strongly magnetizable substances, and the fluid-layer thickness is an easily variable parameter.
The study of the inhomogeneous magnetostatic field scattering is of interest for determining the stability characteristics
of ferrofluid dispersions, since the "spatial harmonic"-type distribution features exponential inhomogeneity of the field
modulus and can cause a disturbance in the homogeneous dispersion distribution in the fluid sample. Consequently,
this field is not only a probing, but also a test factor "deforming" the structure of the magnetic fluid.

1. Description of the Experimental Facility. As a magnetic field source, we used a plane periodic magnetic
system 1 composed of elementary magnets made from a hard magnetic material in the form of rectangular parallelepi-
peds extended along the y-axis and magnetized perpendicular to this axis (Fig. 1). The spatial period of the system is
composed of four elementary cells (fourth-order system) with λ = 80 mm, la = 20 mm, and an elementary cell width
of 20 mm. The overall dimensions of the system are 160 × 160 mm.

A cell 2 filled with a magnetic fluid is placed on the magnet. In our experiments, we use cells of a different
height with two limiting horizontal plates 3 and 4 made of organic glass. The geometric parameters of the cells are as
follows: length (along the x-axis) of 60 mm, width (along the y-axis) of 50 mm, heights lc = 3.3 mm, 13, 16.7, and
19.7 mm, thicknesses of the limiting horizontal plates of the cell of 3.1 mm. The upper limiting plate 4 excludes per-
turbations on the magnetic fluid surface when a cell completely filled with a magnetic fluid is placed on the magnetic
system,

As a magnetic fluid, we used a colloidal suspension of magnetite particles in transformer oil. The dependence
of its magnetization on the magnetic field strength is given in Fig. 2a. To describe the magnetization curve, it is con-
venient to use the equation [5]

M = MsH
 ⁄ (Hh + H) . (1)

According to (1), the H/M ratio and H are related by a linear dependence (Fig. 2b). Approximating the ex-
perimental data by a straight line, we find the parameters of Eq. (1): Ms = 54.44 kA/m and Hh = 17.49 kA/m.

2. Magnetostatic Field Distribution in a Linearly Magnetizable Layered Medium. We assume that for an
approximate description of the field distribution the space is divided into three plane-parallel unbounded layers (a′, a),
(a, c), and (c, c′) and two semispaces (−∞, a′) and (c′, +∞) (Fig. 1).
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The distribution of components of the constant component of magnetization in the field source (a′, a) can be
given in the form of a Fourier expansion

Mx = − ∑ 

n

 Mxn sin (nx) ,   Mz =  ∑ 

n

 Mzn cos (nx) ,   n = 1, 2, 3, ... . (2)

We use dedimensionalized spatial variables and, as a distance scale, we choose the quantity λ ⁄ 2π. Within each cell
Mx = Mf = const and Mz = Mf = const  and the magnetization orientation alternates in accordance with Fig. 1.

The field generated by the first harmonic (n = 1) of distribution (2) in a linearly magnetizable layered me-
dium can be given in the form [6]

H
(i)

 = Li exp (zi − z) (ix sin x + iz cos x) + Ri exp (z − zi) (− ix sin x + iz cos x) , (3)

where the constants Li and Ri (base projections of the field for the ith layer) are determined from the conditions at the
interfaces between layers with different magnetic permeabilities of the substance µi that are constant within each layer.
In the absence of magnetized layers in the upper semispace (a, +∞) the field is only determined by the L-projection

H
(0)

 = La exp (− z) (ix sin x + iz cos x) ,    H
(0)  = H

(0)
 = ξHh , (4)

where ξ = ξa exp (−z); ξa = La
 ⁄ Hh.

From (1) it follows that at values of the dimensionless variable ξ << 1 ("weak field") the layer is in the re-
gion of linear magnetization and at ξ >> 1 ("strong field") it is in the saturation region.

Fig. 1. Schematical representation of the facility: 1) magnetic system; 2) cell;
3, 4) limiting plates; 5) sensor of the magnetic induction meter.

Fig. 2. Dependence of the magnetic characteristic of the fluid [a) magnetiza-
tion; b) inverse magnetic susceptibility] on the magnetic field strength: [1) ex-
periment; 2) linear-fractional dependence].
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To determine the parameter La, we measured the dependences of the field strength, presented on a logarithmic
scale in Fig. 3, on the distance to the surface of the system at various positions of the reference point of the z-coor-
dinate. It is seen that at distances of z ≥ 5 mm the role of the higher harmonics becomes negligibly small and the plot
has a rectilinear asymptotics. Because of the finiteness of the dimensions of the magnetic system, at z ≥ 17 mm near
the edge and at z ≥ 21 mm in the center of the system the plot begins to somewhat deviate from the straight line.
Consequently, in the region of 5 ≤ z ≤ 21 mm the field of the source used is described, with a good degree of accu-
racy, by the spatial harmonic (4) for which La = 168.5 kA/m and ξa = 9.63.

In the presence of a layered linearly magnetizable medium the base projections of the field at either side of
the interface between media with a different magnetic permeability is determined as

qi = 
Li

Li
−

 = 
1 − ri

1 + risi−1 exp (− 2li)
 ,   si = 

Ri
−

Li
−

 = 
ri + si−1 exp (− 2li)

1 + risi−1 exp (− 2li)
 , (5)

where ri = (µi − µi+1)/(µi + µi+1); Li
− = L (z = zi − 0); Li = L (z = zi + 0).

Relations (5) are recurrent formulas by which the coefficients qi and si for any semispace are determined in
terms of layer thicknesses li and magnetic permeabilities µi in a given semispace. For example, parameters for the
semispace of z ≥ zj can be expressed in terms of values with indices i ≤ j. For the edge boundary, the condition
l1 → ∞ takes place and, as follows from (5), s1 = r1 and q1 = 1 − r1. The boundary number i increases with decreas-
ing boundary coordinate zi.

Consider the spatial harmonic transformation under interaction with a magnetic layer (c, c′) of thickness lc
with magnetic permeability µ. For the coefficient of field reflection from the layer at rc′ = sc′ = –rc B −r we obtain

s = 
Rc

−

Lc
−

 = 
r [1 − exp (− 2lc)]

1 − r
2
 exp (− 2lc)

 . (6)

The coefficient of field transmission through the layer is equal to the product of the coefficients of transmission
through the boundaries of the semispaces connected to the layer boundaries. Taking into account that

qc = 
1 − r

1 − r
2
 exp (− 2lc)

 ,   qc′ = 1 + r , (7)

we have

q = 
Lc′

Lc
−
 exp (− lc)

 = qcqc′ = 
1 − r

2

1 − r
2
 exp (− 2lc)

 . (8)

Fig. 3. Logarithmic dependence of the field strength on the z-coordinate: [1) at
a distance of 5 mm from the edge; 2) in the center of the system].
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From (8) the expression for the coefficient of field screening by the layer

∆q B 1 − q = 
r
2
 [1 − exp (− 2lc)]

1 − r
2
 exp (− 2lc)

(9)

follows.
3. Experimental Investigation of the Magnetostatic-Field Spatial Harmonic Transformation by a Mag-

netizable Layer. A nonmagnetic plane-parallel plate specifying the distance zd of the sensing element of the magnetic
induction meter from the source surface is placed on the magnetic system. The probe moves over the plate surface
along the x-coordinate, and the z-component of the magnetic field strength, whose maximum value (amplitude) for the
monoharmonic field is equal to the field modulus Hd

(0), is determined. With the same position of the probe over it on
the spacers a cell with a magnetic fluid is placed and the field modulus in the presence of the cell is determined. The
change in the meter reading in this case (reflection effect) ∆Hd

ref = Hd − Hd
(0) is due to the field reflection from the

magnetizable layer. The position of the interface c is determined by the parameter zc = zd + ld (Fig. 1). Changing zc
(moving the cell along the z-axis), one can change the external field strength at the layer input. In so doing, the sens-
ing element of the detector in the course of measurements was located at a constant distance ld = 3.4 mm from the
magnetizable layer boundary. Figure 4a shows the dependences of the reflection effect on the external field strength
Hd

(0) for various thicknesses lc of the magnetizable layer.
Analogous measurements have been made for the case where the magnetizable layer was situated between the

field source surface and the induction meter probe. In this case, the decrease in the field ∆Hd′
scr = Hd′

(0) − Hd′ is due to
the screening effect of the layer. The measurement data for the screening effect versus the external field strength at
the layer output are given in Fig. 4b. The sensing element of the detector is located at a constant distance ld′ = ld =
3.4 mm from the magnetizable layer boundary c′; therefore, the position of the upper boundary of the layer c′ is de-
termined by the parameter zc′ = zd − ld′.

For the magnetic system made from a hard magnetic ferromagnet, the permeability can be assumed to be ap-
proximately equal to unity. In this case, the secondary reflection of the field from the source (a-layer) can be ne-
glected, and it can be assumed that the L-field in the layer (a, c) remains unchanged when the c-layer is introduced.
This approximation is fulfilled under the experimental conditions, which permits considering the field in the layer (a,
c) to be equal to the external field L = H(0) = ξHh. Taking into account that in the semispace (c′, +∞) the R-field is
absent, to determine the base projections by the measurement data, we have

Fig. 4. Dependence of changes in the field in the regions of reflection (a) and
screening (b) on the characteristics of the layer position for various layer thick-
nesses: [1) 3.3; 2) 8.3; 3) 13.4; 4) 16.7; 5) 19.7 mm; (a) 6 and 7) calculation
by the one-layer model for µ∗  = µc and µ∗  = µc′, respectively; (b) 6 and 7)
conditional maximum curve calculated by the one-layer model; 8) calculation
by the multilayer model]. Dark symbols — results of measurements, light sym-
bols of the same shape — results of calculations.
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Lc
−
 = Hd

(0)
 exp (− ld) ,   Rc

−
 = ∆Hd

ref
 exp (ld) ,   Lc′ = Hd′ exp (ld′) . (10)

These expressions are the basis of the calculation formulas for experimentally determined values of the transformation
coefficients

s = ∆Hd
ref ⁄ Hd

(0)
 exp (2ld) ,   ∆q = ∆Hd′

scr ⁄ Hd′
(0)

 . (11)

4. Quasi-Linear Models for Calculating the Transformation Coefficients in the Nonlinearly Magnetizable
Medium. The linear theory offers, for calculating the reflection and screening coefficients, expressions where the sub-
stance permeabilities µ are constant within the layer. However, under the experimental conditions µc in the vicinity of
the boundary c markedly differs from µc′ in the vicinity of the boundary c′. For example, the external field strength
within the layer at lc = 19.7 mm changes from 108 kA/m at the lower boundary to 27 kA/m at the upper boundary
of the layer (Fig. 3). The corresponding permeability values are from µc = 1.4 to µc′ = 2.4.

The simplest method for describing the phenomenon of field transformation in a nonlinearly magnetizable me-
dium consists of the assumption that within the layer the permeability is constant and equal to a certain effective value
of µ∗  lying in the range of changes in the actual permeability. This approach is hereinafter referred to as the single-
layer transformation model. As the strength at the layer input is changed, there is also a change in µ∗  in the general
case, and in the single-layer model the problem of choosing the effective value of permeability exists. Consider the
simplest variants: (a) the maximum value of µc′ attainable in the vicinity of the boundary c′ is chosen and (b) the
minimum value of µc is chosen. By the maximum and minimum values of µ∗  from (6) and (9) one can determine
intervals in which transformation coefficients are contained, since they are monotonic functions of permeability.

As the layer thickness is decreased, the range of change in the permeability inside the layer narrows and, con-
sequently, the uncertainty of the description on the basis of the one-layer model decreases. Therefore, a more detailed
approach for taking into account the nonlinearity of the law of magnetization in wide layers is to conditionally split
the layer into N sublayers of thickness lc ⁄ N each. Within each sublayer, µ∗  can be assumed to be constant and equal
to the mean value of µi∗  = (µi + µi−1

− )/2, where i = 1, ..., N + 1; µ1 = 1 is the permeability of the semispace (c′, ∞);
µN+1

−  = 1 is the permeability of the layer (a, c).
Upon transmission through the sublayer boundaries µ∗  changes stepwise. In this case, s = sN+1 B sc is calcu-

lated as the coefficient of reflection from the multilayer sample by the second of formulas (5). The transmission coef-
ficient through the layer is determined from (5) as

q = q1q2 ... qi ... qN+1 , (12)

where q1 = qc′; qN+1 = qc.
Using (1) for the magnetization, we have

µ = 1 + χm (1 + H ⁄ Hh)−1
 ,   χm = Ms

 ⁄ Hh . (13)

To determine the field strength H inside the layers, we use various approximate approaches. In the simplest
case, it can be taken as equal to the external field strength H = Hhξ. On the basis of the formula for the field modu-
lus following from (3) we obtain

H (x) = √ Hx
2 + Hz

2  + √ L2 + R2 + 2LR (cos2 x − sin2 x)  . (14)

From this it is seen that the resulting field strength inside the layer, as opposed to the external field strength, changes
not only across but also along it. Averaging in various ways (13) and (14) over x, we can obtain one-dimensional per-
meability distributions. Assuming in (13)

H (x) → sHt = 
1
π

 ∫ 
0

π

H (x) dx , (15)
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we obtain medium-field approximations, which are of interest only in numerical calculations, since the integral in (15)
is expressed in terms of special functions. For analytical estimates, one can use a simpler averaging. According to
(14), at fixed z the field value varies over the range of Hmin = L − R ≤ H(x) ≤ Hmax = L + R. Assuming H =
(Hmin + Hmax)/2 = L, we obtain an approximation of the internal L-field. In particular, for the one-layer model we have

H (x) → L = qcHhξ ,   µ = 1 + χm (1 + qcξ)−1
 . (16)

The parameter qc takes into account the demagnetizing influence of the layer boundaries. At qc = 1 from (16)
the approximation of the external L-field follows. Equations (13), (14) in the approximation of the medium and inter-
nal L-field represent a rather complicated system, which determines the self-consistent field strength and permeability
distributions. Let us explain the method of solving this system in calculating the transformation parameters by the mul-
tilayer model. By the external field the values of µ are calculated in the first approximation at the interfaces of all
sublayers, then by them — the mean values of µ∗  in all sublayers and the coefficients ri for all interfaces, then by
formulas (5) the transformation coefficients for all boundaries are calculated, and then the base projections

Li = qiLi
−
 ,   Li−1

−
 = Li exp (− lc

 ⁄ N) ,   Ri
−
 = siLi

−
 ,   Ri = Ri−1

−
 exp (− lc ⁄ N) .

are determined. By these (with the aid of (14)) the averaged field in the vicinity of all boundaries is calculated, the
refined values of µ are determined, and so on. After the necessary number of iterations we obtain the self-consistent
values of µ and H.

5. Interpretation of the Experimental Results on the Basis of Quasi-Linear Models. Figure 4a shows the
calculated dependences of the reflection effect on the external field strength for the thickest layer of lc = 19.7 mm
where the changes in the field caused by the introduction of the layer are the greatest and are registered with the least
relative errors. The calculation formula follows from (11), ∆Hd

ref = sHhξd exp (2ld). As would be expressed, the experi-
mental data lie between the limiting dependences of the one-layer model. The calculation by the multilayer model with
increasing number of layers leads soon enough (N ≥ 7) to a converging result, which makes it possible to considerably
improve the description of the experimental data as compared to the one-layer model.

The experimental dependences of the screening effect on the external field strength for lc = 8.3 and 13 mm
have a conditional maximum at Hd′

(0) C 20 kA/m (Fig. 4b). From these data it may be concluded that the value of the
conditional maximum depends nonmonotonically on the layer thickness. At lc C 13 mm the absolute maximum
(∆Hmax

scr  D 3.2 kA/m) is attained, since the dependences for both lc = 8.3 mm and lc = 19.7 mm lie lower than for lc
= 13 mm. At lc = 19.7 mm the conditional maximum has not been attained because of the large thickness of the layer
limiting the shift of its upper boundary into the region of fairly strong fields.

As follows from (11), the screening effect is calculated by the formula ∆Hd′
scr = ∆qHhξd′. As the field acting

on the layer, which is characterized by ξd′, increases, the screening coefficient ∆q decreases. The presence in the for-
mula of two factors depending in an opposite manner on the field intensity leads to the presence of a maximum. The
curves in Fig. 4b calculated by the multilayer model for wide layers (19.7 mm and 13 mm) are in good agreement
with the measurement data. As the layer thickness decreases (8.3 mm and 3.3 mm), the discrepancy between the cal-
culated and experimental data increases. This is likely to be due to the small values of the effect, which in thin layers
approach the measurement error. The calculated characteristics of the absolute maximum are in good agreement with
the measured ones (exceeding them by 5–10%), although they are attained at a different layer thickness (8.3 mm).

Let us investigate the extreme properties of the screening effect on the basis of the one-layer model that gives
less definite, compared to the multilayer model, but better visible analytical relations for the maximum characteristics.
We make an essential assumption concerning the behavior of the effective permeability in the case of change of the
layer position: assume that µ∗  is equal to the true permeability µ at a point fixed relative to the layer whose distance
l∗  from the point d′ remains unchanged when the layer is displaced. Then, in the extremum condition, we can replace
the variable ξd′ by ξ∗  and write it in the form d∆Hd′

scr ⁄ dξ∗  = 0, from which it follows that

  ∆q∗  = ξ∗  
dq

dr
 
dr

dξ
 , (17)
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where ξ∗  = ξa exp (l∗  − zd′); ∆q∗  = ∆q(ξ∗ ), and the values of the derivatives are taken at ξ = ξ∗ . Taking into account
that in the approximation of the internal L-field the permeability is calculated by (16), from the definition of r  in (6)
and (9) it follows that

r = χm (2 + χm + 2qcξ)−1
   or   r

−1
 = rm

−1
 + 2qcξ ⁄ χm . (18)

Taking into account (7) and (8), from (17) and (18) we find

χm [1 − r∗
2
 exp (− 2lc)] = 2ξ∗  (2 − r∗ ) r∗  ,   2ξ∗  (1 − r∗ ) rmr∗  = (rm − r∗ ) [1 − r∗

2
 exp (− 2lc)] χm .

The solution of this system is of the form

r∗  = 1 − √1 − rm  ,   ξ∗  = 
χm

2rm
 [1 − r∗

2
 exp (− 2lc)] .

It is seen that the effective reflection coefficient r∗  corresponding to the conditional maximum depends only on the pa-
rameters of the magnetization curve and is not associated with the layer thickness. For the fluid used in the experi-
ments, µm = 1 + Ms

 ⁄ Hh = 4.64, rm = (µm − 1)/(µm + 1) = Ms/(Ms + 2Hh) = 0.609, consequently, r∗  = 0.375.
Thus, the characteristics of the conditional maximum of the screening effect at the point where the detector is

positioned are determined, from the point of view of the one-dimensional model with allowance for ξd′ =
ξ∗  exp (−l∗ ), by the formulas

∆Hd∗
′

scr
 = ∆q∗ Hhξd′ = 

Msr∗
2

2rm
 [1 − exp (− 2lc)] exp (− l∗ ) , (19)

Hd∗
′

(0)
 = Hhξd′ = 

Ms

2rm
 [1 − r∗

2
 exp (− 2lc)] exp (− l∗ ) , (20)

∆q∗  = 
∆Hd∗

′
scr

Hd∗
′

(0)
 = 

r∗
2
 [1 − exp (− 2lc)]

1 − r∗
2
 exp (− 2lc)

 . (21)

Expression (21) for the relative characteristic of the effect contains no uncertain parameter l∗ , and the abso-
lute characteristics (19), (20) depend on it. Assume that l∗  = nlc + ld′. The value of n = 1 corresponds to the choice,
as the effective permeability, of the minimum value of µ∗  = µc and the value of n = 0 — of the maximum value of
µ∗  = µc′. At these values of l∗  (19) and (20) describe the end positions of the conditional maxima curves (Fig. 4b).
The limiting curve (n = 1) has a maximum at a value close to the field value of Hd′

(0) D 20 kA/m at which the ex-
perimentally registered absolute maximum is observed. However, the calculated value of the reflection effect (D1.4
kA/m) is much lower than the experimental one (D3.2 kA/m). From the condition dHd∗

scr ⁄ dlc = 0 we obtain the equa-
tion exp (−lcm) = √n ⁄ (n + 2)  determining lcm — the thickness of the layer at which the absolute maximum is at-
tained. Substituting lcm into (19), (20) we have

∆Hd′m
scr

 = 
Msr∗

2

rm (2 + n)
 




n

2 + n





n ⁄ 2

 exp (− ld′) , (22)

Hd′m
(0)

 = 
Ms

2rm
 



1 − 

r∗
2
n

n + 2




 




n

2 + n





1 ⁄ 2

 exp (− ld′) , (23)
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∆qm = ∆Hm
scr ⁄ Hd′m = r∗

2 ⁄ (1 + (1 − r∗
2) n ⁄ 2) . (24)

From (22)–(24), the following limiting expressions for the absolute maximum characteristics follow:
at n = 1, lcm C 7 mm

∆Hd′m
scr

 = 
Msr∗

2

3 √3rm

 exp (− ld′) ,   Hd′m
(0)

 = 
Ms

2 √ 3
 






1 − 

r∗
2

3







 exp (− ld′) ,   ∆qm = 

r∗
2

1 + (1 − r∗
2) ⁄ 2

 ,

and at n = 0, lc → ∞, lcm > 40 mm

∆Hd′m
scr

 = 
Msr∗

2

2rm
 exp (− ld′) ,   Hd′m

(0)
 = 

Ms
2

 exp (− ld′) ,   ∆qm = r∗
2
 .

The estimates of the region of parameters where the characteristics of the absolute maximum for the fluid
used in the experiments should lie are as follows: 1.85 ≤ ∆Hd′m

scr  < 4.81 kA/m, 18.8 < Hd′m
(0)  < 34.2 kA/m, 0.0984 <

∆qm < 0.1406. In Fig. 4b this region is represented by a quadrangle. According to the experimental data,  ∆qm C
3.2 ⁄ 20 = 0.16, which is somewhat beyond the limits outlined by the one-layer approximation.

Figure 5 shows a comparison of the experimental values of the transformation coefficients determined by the
measurement data obtained in accordance with formulas (11) with the theoretical values calculated with the use of the
multilayer model. In general, the measured and calculated values are in agreement. The transmission-coefficient agree-
ment is somewhat worse than the reflection-coefficient agreement, which is explainable: the transmission is determined
by the screening effect which is weaker than the reflection effect.

The general character of the dependences given in Fig. 5 is explained by the decrease in the permeability with
increasing strength. In weak fields (ξ << 1), µ reaches its maximum value µ = µm = 1 + χm and the layer is charac-
terized by a maximum reflection coefficient and a minimum transmission coefficient that are exactly calculated by for-
mulas (6) and (8). These values marked in Fig. 5 along the coordinate axis are limiting values of the dependences
calculated by the multilayer model.

As the field is increased (by placing the layer closer to the source), there is a monotonic decrease in the re-
flectivity and, accordingly, an increase in the transmission capacity. In strong fields at ξ >> 1 and µ → 1, the reflection
coefficient tends to zero and the transmission coefficient tends to unity.

Fig. 5. Dependences of the transformation coefficients on the characteristics of
the layer position in the external field for various layer thicknesses lc: [1) 3.3;
2) 8.3; 3) 19.7 mm]. Dark symbols — results of measurements, light symbols
of the same shape — results of calculation by the multilayer model.
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CONCLUSIONS

The above quasi-linear models of transformation of the spatial harmonic of the magnetostatic field under in-
teraction with a nonlinearly magnetizable medium take into account only one of the two types of fluid-induced field
sources associated with the jump in the normal component of the field magnetization at the interfaces between layers
with a different permeability. The second type, associated with the permeability inhomogeneity in the fluid volume in
the one-layer model, is ignored, and in the multilayer models it is taken into account only partially. Nevertheless, such
an approach makes it possible to form a fairly adequate idea about the transformation effect and is the basis for fur-
ther development of the problem. In particular, of interest are the increase in the accuracy of measurements and the
widening of their range, the account in the theory of volume field sources, and experimental and theoretical studies of
the higher harmonics in reflected and transmitted fields.

The noticeable deviation of the experimental estimate of the maximum value of the screening coefficient
∆qm = 0.16 from the theoretical limit of the quasi-linear theory (which is 0.14 for the investigated fluid) cannot, ob-
viously, be explained on the basis of a more precise nonlinear theory either and points to the presence of some inho-
mogeneity of the sample. Therefore, experimental and theoretical studies of the fine laws of magnetostatic field
transformation are important for the development of methods of investigation of the structure of magnetic fluids them-
selves.

NOTATION

H, magnetic field strength, kA/m; M, magnetization of the material, kA/m; µ, magnetic permeability; χ, mag-
netic susceptibility; L, R, base projections of the field, kA/m; ξ, dimensionless external field; r, harmonic reflection co-
efficient from a homogeneous semispace; s, harmonic reflection coefficient from a layered semispace; q, harmonic
transmission coefficient through the interface; l, layer height, mm; λ, spatial period of the field distribution, mm; x, z,
coordinates. Indices: s, saturation state; h, halved magnetization of the material; a, upper boundary of the magnetic
layer; f, ferromagnetic; c and c′, lower and upper boundaries of the magnetofluid dispersion layer; d, sensing element
of the magnetic induction meter, probe; ∗ , characteristic value; m, conditional maximum; (0), external field; max and
min, maximum and minimum values; ref, reflection effect; scr, screening effect; ′, for the upper layer.
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